![]() Энергоэффективность электродвигателя способы , От чего зависит, как повысить эффективность |
Здравствуйте, гость ( Вход | Регистрация )
![]() Энергоэффективность электродвигателя способы , От чего зависит, как повысить эффективность |
![]()
Сообщение
#1
|
|
![]() Активный участник ![]() ![]() ![]() Группа: Пользователи Сообщений: 403 Регистрация: 23.7.2016 Пользователь №: 49672 ![]() |
От чего зависит энергоэффективность электродвигателя? Только ли от геометрической точности исполнения. Все упирается в немагнитный зазор? А если залить в немагнитный зазор магнитную жидкость, предварительно опрессовав все щели пластиком?
Представим себе, что геометрическая точность изготовления статора и ротора асинхронного двигателя столь совершенна, что представит из себя гидродинамический подшипник (немагнитный зазор на порядок меньше). Будет-ли такой двигатель в большей степени энергоэффективным чем серийный. Ведь нужная напряженность магнитного поля для создания момента будет достигнута при меньшей плотности тока в обмотках и, следовательно, потери на нагрев будут меньше.? P.S. В замен затрат на достижение высокой геометрической точности получим экономию меди, лучшую энегроэффективность и, экономию на подшипниках (только упорные низкой стоимости и несущей способности). Сообщение отредактировал astrahard - 21.6.2017, 17:12 |
![]() |
|
![]() |
![]()
Сообщение
#2
|
|
![]() Активный участник ![]() ![]() ![]() Группа: Пользователи Сообщений: 403 Регистрация: 23.7.2016 Пользователь №: 49672 ![]() |
Вот нашел, конструктивные меры по повышению энергоэффективности, жаль только, что не указан весовой вклад по пунктам, кстати, кто располагает данными о распределении потерь (сталь, медь, подшипники в процентах)
Далее с моими комментариями: В асинхронных двигателях повышение энергоэффективности достигается: - Применением новых марок электротехнической стали с меньшими удельными потерями и меньшей толщиной листов сердечников. (очень сомнительно по-моему вклад стали в потери самый меньший) - Уменьшением воздушного зазора между статором и ротором и обеспечением его равномерности (способствует снижению намагничивающей составляющей тока обмотки статора, уменьшению дифференциального рассеяния и снижению электрических потерь). (вот это я одобряю) - Снижением электромагнитных нагрузок, т.е. увеличением массы активных материалов при уменьшении количества витков и увеличении сечения проводника обмотки (приводит к снижению сопротивлений обмоток и электрических потерь). (предыдущий пункт влияет на текущий и, вообще, взаимосвязь очень сильная между последними двумя тезисами, то-есть уменьшение зазора автоматически снижает электромагнитные нагрузки и повышает относительную массу активных материалов) - Оптимизацией геометрии зубцовой зоны, применением современной изоляции и пропиточного лака, новых марок обмоточного провода (увеличивает коэффициент заполнения паза медью до 0,78…0,85 вместо 0,72…0,75 в электродвигателях стандартной энергоэффективности). Приводит к снижению сопротивлений обмоток и электрических потерь. (да это необходимая мера) - Применением меди для изготовления короткозамкнутой обмотки ротора взамен алюминия (приводит к снижению электрического сопротивления обмотки ротора на 33% и соответствующему снижению электрических потерь). (прикольно, это все, что автор мог выразить цифрами) - Применением высококачественных подшипников и стабильных маловязких смазок, выносом подшипников за пределы подшипникового щита (улучшает обдув подшипников и теплоотдачу, снижает уровень шума и механические потери). (да и ликвидация скошенности зубцов ротора в случае частотного привода) - Оптимизацией конструкции и производительности вентиляционного узла с учетом меньшего нагрева электродвигателей повышенной энергоэффективности (снижает уровень шума и механические потери). (да и конструкция вентилятора обеспечивающего постоянный воздушный поток при изменении скорости в широких пределах ) - Применением более высокого класса нагревостойкости изоляции F при обеспечении перегрева по классу В (позволяет избежать переустановленной мощности в приводе с систематическими перегрузками до 15%, эксплуатировать двигатели в сетях с существенными колебаниями напряжения, а также при повышенной температуре окружающей среды без снижения нагрузки). (само собой в силу общего совершенствования полимерных пленок представленных на рынке) - Учёт при проектировании возможности работы с преобразователем частоты. Сообщение отредактировал astrahard - 13.7.2017, 22:56 |
![]() |
|
![]() ![]() ![]() |
![]() |
Текстовая версия | Сейчас: 18.2.2025, 6:32 |
|
![]() |