Лекция N 32
При решении электротехнических задач все вещества в магнитном отношении делятся на две группы:
Для концентрации магнитного поля и придания ему желаемой конфигурации отдельные части электротехнических устройств выполняются из ферромагнитных материалов. Эти части называют магнитопроводами или сердечниками. Магнитный поток создается токами, протекающими по обмоткам электротехнических устройств, реже – постоянными магнитами. Совокупность устройств, содержащих ферромагнитные тела и образующих замкнутую цепь, вдоль которой замыкаются линии магнитной индукции, называют магнитной цепью.
Магнитное поле характеризуется тремя векторными величинами, которые приведены в табл. 1.
Таблица 1. Векторные величины, характеризующие магнитное поле
Наименование |
Обозначение |
Единицы измерения |
Определение |
Вектор магнитной индукции |
|
Тл (тесла) |
Векторная величина, характеризующая силовое действие магнитного поля на ток по закону Ампера |
Вектор намагниченности |
|
А/м |
Магнитный момент единицы объема вещества |
Вектор напряженности магнитного поля |
|
А/м |
где |
Основные скалярные величины, используемые при расчете магнитных цепей, приведены в табл. 2.
Таблица 2. Основные скалярные величины, характеризующие магнитную цепь
Наименование |
Обозначение |
Единица измерения |
Определение |
Магнитный поток |
|
Вб (вебер) |
Поток вектора магнитной индукции через поперечное сечение |
Магнитодвижущая (намагничивающая) сила МДС (НС) |
|
A |
|
Магнитное напряжение |
|
А |
Линейный интеграл от напряженности магнитного поля |
Характеристики ферромагнитных материалов
Свойства ферромагнитных материалов характеризуются зависимостью магнитной индукции от напряженности
магнитного поля. При этом различают кривые намагничивания, представляющие
собой однозначные зависимости
, и гистерезисные петли
- неоднозначные зависимости
(см. рис. 1).
Основные понятия, характеризующие зависимости , приведены в табл. 3.
Таблица 3. Основные понятия, характеризующие зависимости
Понятие |
Определение |
Магнитный гистерезис |
Явление отставания изменения магнитной индукции B от изменения напряженности магнитного поля H |
Статическая петля гистерезиса |
Зависимость Площадь статической петли гистерезиса характеризует собой потери на магнитный гистерезис за один период изменения магнитной напряженности |
Начальная кривая намагничивания |
Кривая намагничивания предварительно размагниченного ферромагнетика (B=0;H=0)
при плавном изменении магнитной напряженности H. Представляет собой однозначную
зависимость |
Основная кривая намагничивания |
Геометрическое место вершин петель магнитного гистерезиса (см. кривую
2 на рис. 1). Представляет собой однозначную зависимость |
Предельная петля гистерезиса (предельный цикл) |
Симметричная петля гистерезиса при максимально возможном насыщении |
Коэрцитивная (задерживающая) сила |
Напряженность магнитного поля Нс, необходимая для доведения магнитной индукции в предварительно намагниченном ферромагнетике до нуля. В справочной литературе обычно дается для предельной петли гистерезиса |
Остаточная индукция |
Значение индукции магнитного поля Вr при равной нулю напряженности магнитного поля. В справочной литературе обычно дается для предельного цикла |
Магнитомягкие и магнитотвердые материалы
Перемагничивание ферромагнитного материала связано с расходом энергии на этот процесс. Как уже указывалось, площадь петли гистерезиса характеризует энергию, выделяемую в единице объема ферромагнетика за один цикл перемагничивания. В зависимости от величины этих потерь и соответственно формы петли гистерезиса ферромагнитные материалы подразделяются на магнитомягкие и магнитотвердые. Первые характеризуются относительно узкой петлей гистерезиса и круто поднимающейся основной кривой намагничивания; вторые обладают большой площадью гистерезисной петли и полого поднимающейся основной кривой намагничивания.
Магнитомягкие материалы (электротехнические стали, железоникелевые сплавы, ферриты) определяют малые потери в сердечнике и применяются в устройствах, предназначенных для работы при переменных магнитных потоках (трансформаторы, электродвигатели и др.). Магнитотвердые материалы (углеродистые стали, вольфрамовые сплавы и др.) используются для изготовления постоянных магнитов.
Статическая и дифференциальная магнитные проницаемости
Статическая магнитная проницаемость (в справочниках начальная и максимальная)
![]() |
(1) |
определяется по основной кривой намагничивания и в силу ее нелинейности не постоянна по величине (см. рис. 2).
Величина определяется тангенсом угла наклона
касательной в начале кривой
.
Кроме статической вводится понятие дифференциальной магнитной проницаемости, устанавлива-ющей связь между бесконечно малыми приращениями индукции и напряженности
![]() |
(2) |
Кривые и
имеют две общие точки: начальную
и точку, соответствующую максимуму
(см. рис. 2).
При учете петли гистерезиса статическая магнитная проницаемость, определяемая
согласно (1), теряет смысл. При этом значения определяют по восходящей ветви
петли при
и по нисходящей – при
.
При переменном магнитном потоке вводится также понятие динамической магнитной проницаемости, определяемой соотношением, аналогичным (2), по динамической характеристике.
Основные законы магнитных цепей
В основе расчета магнитных цепей лежат два закона (см. табл. 4).
Таблица 4.. Основные законы магнитной цепи
Наименование |
Аналитическое выражение закона |
Формулировка закона |
Закон (принцип) непрерывности магнитного потока |
|
Поток вектора магнитной индукции через замкнутую поверхность равен нулю |
Закон полного тока |
|
Циркуляция вектора напряженности вдоль произвольного контура равна алгебраической сумме токов, охватываемых этим контуром |
При анализе магнитных цепей и, в первую очередь, при их синтезе обычно используют следующие допущения:
- магнитная напряженность, соответственно магнитная индукция, во всех точках
поперечного сечения магнитопровода одинакова
- потоки рассеяния отсутствуют (магнитный поток через любое сечение неразветвленной части магнитопровода одинаков);
- сечение воздушного зазора равно сечению прилегающих участков магнитопровода.
Это позволяет использовать при расчетах законы Кирхгофа и Ома для магнитных цепей (см. табл. 5), вытекающие из законов, сформулированных в табл. 4.
Таблица 5. Законы Кирхгофа и Ома для магнитных цепей
Наименование закона |
Аналитическое выражение закона |
Формулировка закона |
---|---|---|
Первый закон Кирхгофа |
|
Алгебраическая сумма магнитных потоков в узле магнитопровода равна нулю |
Второй закон Кирхгофа |
|
Алгебраическая сумма падений магнитного напряжения вдоль замкнутого контура равна алгебраической сумме МДС, действующих в контуре |
Закон Ома |
где |
Падение магнитного напряжения на участке магнитопровода длиной |
Сформулированные законы и понятия магнитных цепей позволяют провести формальную аналогию между основными величинами и законами, соответствующими электрическим и магнитным цепям, которую иллюстрирует табл. 6.
Таблица 6. Аналогия величин и законов для электрических и магнитных цепей
Электрическая цепь |
Магнитная цепь |
---|---|
Ток |
Поток |
ЭДС |
МДС (НС) |
Электрическое сопротивление |
Магнитное сопротивление |
Электрическое напряжение |
Магнитное напряжение |
Первый закон Кирхгофа: |
Первый закон Кирхгофа: |
Второй закон Кирхгофа: |
Второй закон Кирхгофа: |
Закон Ома: |
Закон Ома: |
Литература
Контрольные вопросы и задачи
Ответ: .
Ответ: .
Ответ: .