Электрик - электричество и энергетика

Эта статья опубликована на сайте Электрик - электричество и энергетика
  http://electrik.org/

URL этой статьи:
  http://electrik.org/news/article91.php

АВТОМАТИЧЕСКАЯ ВОДОКАЧКА

Статьи / Разное, не вошедшее в другие темы.
Послано electrik 08 Фев, 2004 г. - 17:16

С. БИРЮКОВ, г. Москва
Устройство, позволяющее автоматизировать работу насоса при откачивании воды из подвала или перекачивании ее из колодца в резервуар с контролиролем уровня воды в источнике и в резервуаре для ее хранения.

При ограниченном поступлении воды в колодец желательно автоматизировать работу насоса таким образом, чтобы с его помощью можно было откачать максимально возможное количество воды, не допуская, конечно, переполнения резервуара. Схема автомата, обеспечивающего необходимый режим работы насоса, приведена на рис. 1.



К контактам 1-5 подключены четыре датчика уровня, опущенных в воду. Датчики, соединенные с контактами 1 и 2, установлены соответственно на 10 и 100 мм ниже верхнего края приемного резервуара. Аналогично датчики, подключенные к контактам 4 и 3, находятся у дна колодца: первый — примерно на 50, а второй — на 150 мм выше уровня заборных отверстий вибрационного насоса или клапана центробежного. Контакт 5 соединен с корпусом приемного резервуара и с металлической трубой, по которой откачивается вода из колодца.
Если датчики сухие, через резисторы R1-R8 на соответствующие входы микросхемы DD1 подается напряжение источника питания +9 В, но как только они погружаются в воду, напряжение на входах микросхемы за счет проводимости воды приближается к нулевому значению. Рассмотрим работу автомата с момента включения в сеть. Пусть в колодце достаточно много воды, а приемный резервуар пуст. В этом случае на входах 1 и 2 элемента DD1.1 присутствует высокий логический уровень, а на входах 3 и 4 элемента DD1.2 — низкий. Эти элементы представляют собой мажоритарные клапаны [1], выходной сигнал которых соответствует большинству входных. Поэтому на выходе элемента DD1.1 будет высокий уровень, на выходе DD1.2 — низкий. На двух входах элемента DD2.1 — высокий уровень, поэтому на его выходе — низкий, а на выходе DD2.3 — высокий. Этот уровень открывает транзистор VT1, который включает тринисторный оптрон U1, соединяющий друг с другом анод и управляющий электрод симистора VS1 через резистор R13. Симистор включается и подает напряжение на электродвигатель насоса М1. Поскольку автор использовал трехфазный двигатель, напряжение на один из его выводов подается через фазосдвига-ющий конденсатор С8.
При включении автомата в сеть конденсатор С5 разряжен. Присутствующий на выходе элемента DD2.1 низкий логический уровень через конденсатор С5 передается на вход элемента DD2.4, и на его выходе появляется высокий логический уровень, открывающий транзистор VT2. После чего включается оптрон U2 и сими-стор VS2 подключает параллельно конденсатору С8 пусковой конденсатор С9, обеспечивающий быстрый запуск двигателя М1. Напряжение на нижней по схеме обкладке конденсатора С5 повышается за счет тока, протекающего через резистор R10. Примерно через 3 с оно поднимется до порога переключения элемента DD2.4, на его выходе появится низкий логический уровень и пусковой конденсатор С9 отключится. Время нарастания напряжения на конденсаторе С5 выбрано с большим запасом, гарантирующим запуск двигателя. В то же время оно недостаточно для его перегрева.



Далее возможны два варианта работы устройства. Предположим, что воды в колодце достаточно для наполнения приемного резервуара. Тогда через некоторое время после пуска вода подойдет к датчику, подключенному к контакту 2, на входе 2 элемента DD1.1 появится низкий уровень. Выходной сигнал этого элемента, однако, не изменится, поскольку на его входах 13 и 1 — высокий уровень. Когда же резервуар наполнится, низкий уровень появится и на входе 1 элемента DD1.1. Теперь, поскольку на двух входах этого элемента низкий уровень, такой же сигнал появится и на его выходе, в результате чего двигатель М1 остановится.
При отборе воды из резервуара вначале высокий уровень появится на входе 1 элемента DD1.1. Однако это не изменит его состояния, поскольку на его входах 13 и 2 присутствует низкий уровень. Лишь когда уровень воды окажется ниже датчика, подключенного к контакту 2, на двух входах этого элемента будет высокий уровень и двигатель насоса снова включится. Таким образом, элемент DD1.1 выполняет функции триггера, устанавливаемого в единичное состояние при подаче на два его входа высокого уровня и в нулевое состояние при подаче на них низкого уровня [2]. Гистерезис по уровню воды позволяет избежать слишком частых включений двигателя.
Аналогично автомат управляет работой насоса и втом случае, когда воды в колодце недостаточно для наполнения резервуара. Он выключает его, когда уровень воды ниже датчика, соединенного с контактом 4, и включает, когда вода поднимется выше датчика, соединенного с контактом 3. Резисторы R5-R8 и конденсаторы С1-С4 защищают входы микросхемы DD1 от статического электричества и помех, наводимых в проводах и датчиках. Резистор R9 ограничивает выходной ток элемента DD2.2 при перезарядке конденсатора С5. Резисторы R11 и R12 задают ток через све-тодиоды оптронов U1 и U2, a R13 и R14 ограничивают ток через их динисторы и управляющие электроды симисторов VS1 и VS2 в момент включения. Резистор R16 обеспечивает разрядку конденсатора С9 после его отключения от конденсатора С8, a R15 ограничивает ток через симистор VS2 в момент его повторного включения при неполной разрядке конденсатора С9.
В устройстве применен нестабилизированный источник питания, поскольку использованные в нем микросхемы серии К561 сохраняют работе способность при изменении напряжения питания от 3 до 15В. При установке в насосе однофазного двигателя, не требующего на момент пуска подключения дополнительного конденсатора, а также в случае применения вибрационного насоса все элементы, начиная от резистора R9 и заканчивая резистором R16, можно исключить. Необходимо лишь входы неиспользуемого элемента DD2.4 соединить с общим проводом или выводом 14этой микросхемы.
Устройство собрано в виде этажерки и накрыто колпаком, изготовленным из полиэтиленовой канистры для автомобильного масла. На нижней плате, выполненной из текстолита толщиной 6 мм, установлены конденсаторы С8 и С9, к выводам последнего подпаян резистор R16. Верхняя плата — печатная размерами 80x180 мм из стеклотекстолита толщиной 1,5 мм. На ней размещены все остальные детали автомата. Чертеж фрагмента платы приведен на рис. 2. Плата рассчитана на установку резисторов МЛТ соответствующей мощности, конденсаторов КМ-6 (С1-С4, С6), К50-16 (С5) и К50-35 (С7). В качестве С7 можно также использовать К50-6 или К50-16, но тогда при изготовлении печатной платы следует учесть, что расстояние между их выводами 7,5 мм. Вместо транзисторов КТ315Г можно ус- тановить любые транзисторы структуры п-р-п малой или средней мощности с коэффициентом передачи тока базы не менее 40 (при токе коллектора 30...50 мА). Микросхема К561ЛП13 заменима на К561ИК1 [3] при условии соединения ее управляющих входов (выводы 7 и 9) с общим проводом. Вместо диодных мостов можно использовать любые диоды на рабочий ток не менее 100 мА, для замены VD1 и VD2 годятся диоды с рабочим напряжением не менее 300 В.
Тринисторные оптроны серии АОУ103 могут иметь буквенные индексы Б и В, а симисторы КУ208 — В и Г Трансформатор питания Т1 — ТПП220, все его вторичные обмотки соединены последовательно. Допустимо установить любой трансформатор, обеспечивающий на вторичной обмотке напряжение 7...Э В при токе до 100 мА, например, трансформатор от любого адаптера. Кстати, от адаптера можно взять конденсатор для замены С7 и диоды для замены моста VD3. Резистор R15 — проволочный остеклованный, сопротивлением 20...33 Ом. Емкость конденсаторов С8 и С9 указана для случая использования двигателя АОЛ22-43Ф мощностью 400 Вт, обмотки которого включены треугольником. При применении двигателя другой мощности их емкость должна быть пропорционально изменена. Конденсатоы С8 и С9 — металле бумажные МБГО, МБГТ, МБГП на напряжение не менее 400 В или МБГЧ, К42-19на250В.
Датчики представляют собой плоские спирали с наружным диаметром примерно 25 мм, плотно свитые из оголенных концов медного или алюминиевого осветительного провода в двойной изоляции сечением 2x1,5 или 2x2,5 мм2. На рис. 3 показан возможный вариант их установки. Здесь: 1 — труба, по которой откачивается вода из колодца; 2 — вибрационный насос или клапан центробежного насоса; 3 — датчики-спирали; 4 — провод в изоляции.
Для уменьшения шунтирования датчиков длина проводов и изоляции от места их разделения до датчиков должна быть не менее 200 мм. Если поступление воды в колодец достаточно большое, расстояние между датчиками можно существенно увеличить, что уменьшит частоту включения насоса.

С вопросами можете обращаться по почте info@electrik.org [1] или посетив мой сайт: electrik.org [2].
Всего хорошего.

2004 г. Кузнецов Олег



Ссылки в этой статье
  [1] info@electrik.org
  [2] http://electrik.org

   Rambler's Top100      
Электрик © 2002-2008 Oleg Kuznetsov